

Cambridge International AS & A Level

	CANDIDATE NAME			
	CENTRE NUMBER	CANDID NUMBER		
* 2 4	CHEMISTRY			9701/36
4 8	Paper 3 Advanc	ed Practical Skills 2	October/No	ovember 2022
9 6				2 hours
484	You must answe	er on the question paper.		
7 *	You will need:	The materials and apparatus listed in the confidential instruction	าร	
	 Write your a Write your a Do not use Do not writ You may use 	questions. a or dark blue pen. You may use an HB pencil for any diagrams of name, centre number and candidate number in the boxes at the answer to each question in the space provided. an erasable pen or correction fluid. e on any bar codes. se a calculator. show all your working and use appropriate units.	• •).
	INFORMATION	ı	Sess	sion
		ark for this paper is 40. r of marks for each question or part question is shown in		
	brackets [Labor	atory
	Important v	c Table is printed in the question paper. alues, constants and standards are printed in the		
	question paNotes for u	per. se in qualitative analysis are provided in the		
	question pa	per.	For Exami	ner's Use
			1	
			2	
			3	
			Total	

This document has **12** pages.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 In this experiment you will determine the concentration of dilute hydrochloric acid by further diluting it and then titrating with aqueous potassium carbonate.

FB 1 is dilute hydrochloric acid, HC*l*. This acid will also be used in **Question 2**. **FB 2** is $8.46 \text{ g} \text{ dm}^{-3}$ anhydrous potassium carbonate, $K_2 \text{CO}_3$. **FB 3** is bromophenol blue indicator.

- (a) Method
 - Use the **10 cm³** pipette to transfer 10.0 cm³ of **FB 1** into the volumetric flask.
 - Make this solution up to 250 cm³ using distilled water.
 - Shake the volumetric flask and its contents thoroughly. Label this solution **FB 4**.
 - Fill the burette with **FB 4**.
 - Pipette **25.0 cm³** of **FB 2** into a conical flask.
 - Add a few drops of **FB 3**.
 - Perform a rough titration and record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all your burette readings and the volume of **FB 4** added in each accurate titration.

Ι	
II	
III	
IV	
V	
VI	
VII	

[7]

(b) From your accurate titration results, calculate a suitable mean value to be used in your calculations.

Show clearly how you obtained this value.

25.0 cm³ of **FB 2** required cm³ of **FB 4**. [1]

(c) Calculations

(i) Give your answers to (c)(ii), (c)(iv) and (c)(v) to the appropriate number of significant figures.

3

(ii) Use information on page 2 to calculate the amount, in mol, of potassium carbonate present in 25.0 cm³ of **FB 2**.

amount of $K_2CO_3 = \dots mol$ [1]

(iii) Give the ionic equation for the reaction taking place in the titration in (a). Include state symbols.

 $\dots CO_3^{2^-} \dots + \dots H^+ \dots \to \dots$ [1]

(iv) Calculate the concentration, in moldm⁻³, of HCl in **FB 4**.

concentration of HCl in **FB 4** = moldm⁻³ [1]

(v) Calculate the concentration, in moldm⁻³, of HCl in **FB 1**.

- concentration of HCl in **FB 1** = moldm⁻³ [1]
- (d) A student uses a solution containing 8.46 g dm⁻³ of hydrated potassium carbonate in the titration in (a) instead of FB 2.

State whether the student's titre would be larger or smaller than your titre. Explain your answer.

.....

.....

-[1]
- (e) A student carries out the titration described in (a). By mistake, a 25 cm³ pipette is used to transfer 25.0 cm³ of **FB 1** into a volumetric flask. The solution is made up to 250 cm³ with distilled water and labelled **FB 4**.

State how the subsequent experimental procedure could be modified so that the titre obtained in **(b)** is not altered by this mistake.

.....[1] [Total: 15]

- 4
- 2 In this experiment you will determine the enthalpy change, ΔH , for the dehydration of hydrated sodium carbonate to anhydrous sodium carbonate.

 $Na_2CO_3 \bullet 10H_2O(s) \rightarrow Na_2CO_3(s) + 10H_2O(l)$

You will determine the enthalpy changes for the reactions of anhydrous sodium carbonate and hydrated sodium carbonate with excess hydrochloric acid. Then you will use Hess's Law to calculate the enthalpy change for the reaction above.

FB 1 is dilute hydrochloric acid, HCl.

FB 5 is anhydrous sodium carbonate, Na₂CO₃.

FB 6 is hydrated sodium carbonate, Na₂CO₃•10H₂O.

(a) Determination of the enthalpy change for the reaction of anhydrous sodium carbonate, FB 5, with excess hydrochloric acid.

Method

- Support a cup in the 250 cm³ beaker.
- Use the measuring cylinder to transfer 30.0 cm³ of **FB 1** into the cup.
- Measure and record the initial temperature of the acid.
- Weigh the container with **FB 5**. Record the mass.
- Slowly add all FB 5 to the acid in the cup.
- Note that the reaction will be vigorous. Avoid inhaling any acid spray produced.
- Stir until the maximum temperature is reached. Measure and record this temperature.
- Weigh the container with any residual **FB 5**. Record the mass.
- Calculate and record the mass of **FB 5** used.
- Calculate and record the temperature change.

Results

Ι	
II	
III	
IV	

(b) Calculations

(i) Calculate the energy change during this reaction.

energy change = J [1]

(ii) Calculate the amount, in mol, of anhydrous sodium carbonate, **FB 5**, used. Show your working.

amount of $Na_2CO_3 = \dots mol$ [1]

(iii) Calculate the enthalpy change, in kJ mol⁻¹, for the reaction between **FB 5** and **FB 1**, shown below.

 $Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$

enthalpy change for Na ₂ CO ₃	=		. kJ mol ⁻¹
	sign	value	[1]

(c) A student alters the method for the experiment in (a) and uses **FB 1** at half its original concentration but doubles the volume used.

The student suggests that the temperature change measured using their method would be more accurate than using the method in (a).

State if you agree with the student. Explain your answer.

......[1]

(d) Determination of the enthalpy change for the reaction of hydrated sodium carbonate, FB 6, with excess hydrochloric acid, FB 1.

Method

- Support the second cup in the 250 cm³ beaker.
- Use the measuring cylinder to transfer 30.0 cm³ of **FB 1** into the cup.
- Measure and record the initial temperature of the acid.
- Weigh the container with **FB 6**. Record the mass.
- Slowly add all the FB 6 to the acid in the cup.
 Note that the reaction will be vigorous. Avoid inhaling any acid spray produced.
- Stir until the minimum temperature is reached. Measure and record this temperature.
- Weigh the container with any residual **FB 6**. Record the mass.
- Calculate and record the mass of FB 6 used.
- Calculate and record the temperature change.

Results

Ι	
II	
III	

[3]

(e) Calculations

(i) Calculate the enthalpy change, in kJ mol⁻¹, for the reaction.

 $Na_2CO_3 \bullet 10H_2O(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + 11H_2O(l)$

enthalpy change for $Na_2CO_3 \bullet 10H_2O = \dots$ kJ mol⁻¹ sign value [2]

(ii) Use the enthalpy changes calculated in (b)(iii) and (e)(i) to calculate the enthalpy change, in kJ mol⁻¹, for dehydration of hydrated sodium carbonate.

 $Na_2CO_3 \bullet 10H_2O(s) \rightarrow Na_2CO_3(s) + 10H_2O(l)$

enthalpy change for dehydration = $\dots \qquad kJ \text{ mol}^{-1}$ sign value [1]

[Total: 14]

Qualitative analysis

For each test you should record **all** your observations in the spaces provided.

Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.

Where no change is observed you should write 'no change'.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests should be attempted.

- 3 (a) **FB 7** is an aqueous solution containing two anions listed in the Qualitative analysis notes. Neither of the anions contains nitrogen.
 - (i) To a 1cm depth of **FB 7** in a test-tube add a few drops of acidified aqueous potassium manganate(VII). Record your observations.

observations[1]

(ii) Carry out further tests to identify both anions in FB 7.Use a 1 cm depth of FB 7 in a test-tube for each test.Name the reagents you used and record the observations made in your tests.

The anions present in **FB 7** are [4]

- 9
- (b) **FB 8** is a compound which contains one cation and one anion. Both ions are listed in the Qualitative analysis notes.
 - (i) Transfer a small spatula measure of **FB 8** into a hard-glass test-tube. Heat gently, then strongly, until no further change occurs. Allow the test-tube with the residue to cool for approximately 2 minutes.

Record **all** your observations.

 (ii) Pour a 2 cm depth of dilute hydrochloric acid into a test-tube. Carefully, add a small spatula measure of FB 8 to the acid.
 Record your observations. Retain the mixture obtained for use in (b)(iii).

.....

(iii) Add an equal volume of distilled water to the mixture obtained from (b)(ii). Mix thoroughly. Carry out suitable tests to identify the cation in FB 8.
 Use a 1 cm depth of the solution in a test-tube for each test you carry out. Name the reagents you use.
 Record your observations.

[2]

[1]

(iv) From your observations in tests (b)(i), (b)(ii) and (b)(iii), deduce the formula of FB 8.

FB 8 is

[Total: 11]

Qualitative analysis notes

1 Reactions of cations

cation	reaction	on with
	NaOH(aq)	NH₃(aq)
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on warming	_
barium, Ba²+(aq)	faint white ppt. is observed unless [Ba²+(aq)] is very low	no ppt.
calcium, Ca ²⁺ (aq)	white ppt. unless [Ca²+(aq)] is very low	no ppt.
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, Cl⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream/off-white ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives pale yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$)
nitrate, NO₃⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil; decolourises acidified aqueous KMnO ₄
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids); gives white ppt. with high [Ca ²⁺ (aq)]
sulfite, SO ₃ ^{2–} (aq)	gives white ppt. with $Ba^{2+}(aq)$ (soluble in excess dilute strong acids); decolourises acidified aqueous $KMnO_4$
thiosulfate, $S_2O_3^{2-}(aq)$	gives off-white/pale yellow ppt. slowly with H ⁺

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I ₂	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 C mol^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 \mathrm{dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 \mathrm{dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} {\rm mol^2} {\rm dm^{-6}}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ} \mathrm{kg}^{-1} \mathrm{K}^{-1} $ (4.18 J g ⁻¹ K ⁻¹)

						The Pe	Groun	The Periodic Table of Elements	ements							
							5	2			13	14	15	16	17	18
-	1					- т										² He
			Key			hydrogen 1.0										helium 4.0
			atomic number	_	I						5	9	7	8	6	10
		atc	atomic symbol	loc							В	ပ	z	0	ш	Ne
		relé	name relative atomic mass	ISS							boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
											13	14	15	16	17	18
											Al	Si	٩	თ	Cl	Ar
magnesium 24.3 3		4	5	9	7	80	0	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
လိ	o	F	>	ŗ	Mn	Fе	ပိ	īŻ	Cu	Zn	Ga	Ge	As	Se	Br	Кr
scandium 45.0	um O	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
8		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
~		Zr	qN	Mo	Ц	Ru	Rh	Pd	Ag	Cq	In	Sn	Sb	Те	Ι	Xe
yttrium 88.9	£σ	zirconium 91.2	niobium 92.9	molybdenum 95.9	technetium -	ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
57-71	11	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
lanthar	loids	Ħ	Ta	8	Re	SO	Ir	Ŧ	Au	Hg	11	Pb	Ē	Ро	At	Rn
		hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium –	astatine 	radon _
89-103	33	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
actinoids	sp	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	ы	ЧN	Fl	Mc	2	Ts	Og
		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -	nihonium –	flerovium -	moscovium -	livermorium –	tennessine -	oganesson -
2	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
<u> </u>	b		Pr		Pm	Sm	Еu	Gd	Tb	D	Ю	ч	Tm	Υb	Lu	
lanthanum 138.9	mnu 6:		praseodymium 140.9		promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	lutetium 175.0	
89		06	91	92	93	94	95	96	97	98	66	100	101	102	103	
Ac	с	Тh	Ра		Np	Pu	Am	CB	푅	Ç	Es	Е'n	Md	No	Ļ	
actinium	Ш	thorium 232 ()	protactinium 231.0	uranium 238.0	neptunium -	plutonium –	americium	curium	berkelium 	californium _	einsteinium –	fermium -	mendelevium -	nobelium -	lawrencium -	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

PMT

12